Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Database
Language
Document Type
Year range
1.
Microbiol Spectr ; : e0049323, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20243936

ABSTRACT

Co-infection with at least 2 strains of virus is the prerequisite for recombination, one of the means of genetic diversification. Little is known about the prevalence of these events in SARS-CoV-2, partly because it is difficult to detect them. We used long-read PacBio single-molecule real-time (SMRT) sequencing technology to sequence whole genomes and targeted regions for haplotyping. We identified 17 co-infections with SARS-CoV-2 strains belonging to different clades in 6829 samples sequenced between January and October, 2022 (prevalence 0.25%). There were 3 Delta/Omicron co-infections and 14 Omicron/Omicron co-infections (4 cases of 21K/21L, 1 case of 21L/22A, 2 cases of 21L/22B, 4 cases of 22A/22B, 2 cases of 22B/22C and 1 case of 22B/22E). Four of these patients (24%) also harbored recombinant minor haplotypes, including one with a recombinant virus that was selected in the viral quasispecies over the course of his chronic infection. While co-infections remain rare among SARS-CoV-2-infected individuals, long-read SMRT sequencing is a useful tool for detecting them as well as recombinant events, providing the basis for assessing their clinical impact, and a precise indicator of epidemic evolution. IMPORTANCE SARS-CoV-2 variants have been responsible for the successive waves of infection over the 3 years of pandemic. While co-infection followed by recombination is one driver of virus evolution, there have been few reports of co-infections, mainly between Delta and Omicron variants or between the first 2 Omicron variants 21K_BA.1 and 21L_BA.2. The 17 co-infections we detected during 2022 included cases with the recent clades of Omicron 22A, 22B, 22C, and 22E; 24% harbored recombinant variants. This study shows that long-read SMRT sequencing is well suited to SARS-CoV-2 genomic surveillance.

2.
J Med Virol ; 95(2): e28564, 2023 02.
Article in English | MEDLINE | ID: covidwho-2233781

ABSTRACT

New variants and genetic mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome can only be identified using accurate sequencing methods. Single molecule real-time (SMRT) sequencing has been used to characterize Alpha and Delta variants, but not Omicron variants harboring numerous mutations in the SARS-CoV-2 genome. This study assesses the performance of a target capture SMRT sequencing protocol for whole genome sequencing (WGS) of SARS-CoV-2 Omicron variants and compared it to that of an amplicon SMRT sequencing protocol optimized for Omicron variants. The failure rate of the target capture protocol (6%) was lower than that of the amplicon protocol (34%, p < 0.001) on our data set, and the median genome coverage with the target capture protocol (98.6% [interquartile range (IQR): 86-99.4]) was greater than that with the amplicon protocol (76.6% [IQR: 66-89.6], [p < 0.001]). The percentages of samples with >95% whole genome coverage were 64% with the target capture protocol and 19% with the amplicon protocol (p < 0.05). The clades of 96 samples determined with both protocols were 93% concordant and the lineages of 59 samples were 100% concordant. Thus, target capture SMRT sequencing appears to be an efficient method for WGS, genotyping and detecting mutations of SARS-CoV-2 Omicron variants.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Mutation
3.
J Med Virol ; 2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2233782

ABSTRACT

Fast, accurate sequencing methods are needed to identify new variants and genetic mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome. Single-molecule real-time (SMRT) Pacific Biosciences (PacBio) provides long, highly accurate sequences by circular consensus reads. This study compares the performance of a target capture SMRT PacBio protocol for whole-genome sequencing (WGS) of SARS-CoV-2 to that of an amplicon PacBio SMRT sequencing protocol. The median genome coverage was higher (p < 0.05) with the target capture protocol (99.3% [interquartile range, IQR: 96.3-99.5]) than with the amplicon protocol (99.3% [IQR: 69.9-99.3]). The clades of 65 samples determined with both protocols were 100% concordant. After adjusting for Ct values, S gene coverage was higher with the target capture protocol than with the amplicon protocol. After stratification on Ct values, higher S gene coverage with the target capture protocol was observed only for samples with Ct > 17 (p < 0.01). PacBio SMRT sequencing protocols appear to be suitable for WGS, genotyping, and detecting mutations of SARS-CoV-2.

5.
Viruses ; 13(5)2021 05 12.
Article in English | MEDLINE | ID: covidwho-1227071

ABSTRACT

The spread of SARS-CoV-2 and the resulting disease COVID-19 has killed over 2.6 million people as of 18 March 2021. We have used a modified susceptible, infected, recovered (SIR) epidemiological model to predict how the spread of the virus in regions of France will vary depending on the proportions of variants and on the public health strategies adopted, including anti-COVID-19 vaccination. The proportion of SARS-CoV-2 variant B.1.1.7, which was not detected in early January, increased to become 60% of the forms of SARS-CoV-2 circulating in the Toulouse urban area at the beginning of February 2021, but there was no increase in positive nucleic acid tests. Our prediction model indicates that maintaining public health measures and accelerating vaccination are efficient strategies for the sustained control of SARS-CoV-2.


Subject(s)
COVID-19/transmission , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , COVID-19 Vaccines/genetics , Epidemiologic Methods , France/epidemiology , Humans , Public Health , SARS-CoV-2/metabolism , Vaccination/statistics & numerical data , Vaccination/trends
SELECTION OF CITATIONS
SEARCH DETAIL